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Abstract: The conservation agriculture production system (CAPS) approach with drip irrigation
has proven to have the potential to improve water management and food production in Ethiopia.
A method of scaling-up crop yield under CAPS with drip irrigation is developed by integrating a
biophysical model: APEX (agricultural policy environmental eXtender), and a Geographic Information
System (GIS)-based multi-criteria evaluation (MCE) technique. Topography, land use, proximity to
road networks, and population density were considered in identifying potentially irrigable land.
Weather and soil texture data were used to delineate unique climate zones with similar soil properties
for crop yield simulation using well-calibrated crop model parameters. Crops water demand for the
cropping periods was used to determine groundwater potential for irrigation. The calibrated APEX
crop model was then used to predict crop yield across the different climatic and soil zones. The MCE
technique identified about 18.7 Mha of land (16.7% of the total landmass) as irrigable land in Ethiopia.
Oromia has the highest irrigable land in the nation (35.4% of the irrigable land) when compared
to other regional states. Groundwater could supply a significant amount of the irrigable land for
dry season production under CAPS with drip irrigation for the various vegetables tested at the
experimental sites with about 2.3 Mha, 3.5 Mha, 1.6 Mha, and 1.4 Mha of the irrigable land available
to produce garlic, onion, cabbage, and tomato, respectively. When comparing regional states, Oromia
had the highest groundwater potential (40.9% of total potential) followed by Amhara (20%) and
Southern Nations, Nationalities, and Peoples (16%). CAPS with drip irrigation significantly increased
groundwater potential for irrigation when compared to CTPS (conventional tillage production system)
with traditional irrigation practice (i.e., 0.6 Mha under CTPS versus 2.2 Mha under CAPS on average).
Similarly, CAPS with drip irrigation depicted significant improvement in crop productivity when
compared to CTPS. APEX simulation of the average fresh vegetable yield on the irrigable land under
CAPS with drip irrigation ranged from 1.8–2.8 t/ha, 1.4–2.2 t/ha, 5.5–15.7 t/ha, and 8.3–12.9 t/ha for
garlic, onion, tomato, and cabbage, respectively. CAPS with drip irrigation technology could improve
groundwater potential for irrigation up to five folds and intensify crop productivity by up to three to
four folds across the nation.
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1. Introduction

Crop production in Ethiopia is constrained with several challenges that cause low productivity
and economic growth in the region. Soil degradation in the form of soil erosion and decline of soil
fertility is the major constraint for crop production [1]. The alarming rise in population caused the
exploitation of the rainforest and grasslands in the region to increase cultivated lands, which resulted in
soil degradation and deterioration of the environment [2–4]. Crop production in the nation is mainly a
rainfed system using traditional farming practices [2]. The expansion of cultivated land at the expense
of forest, bushes, and grassland is not a feasible option to sustain crop production let alone increased
productivity. Instead, with the current poor soil and water management practices, it contributes to
lower production efficiency [3].

On the other hand, rainfall variability is a great concern for a rainfed agricultural system in
Ethiopia [5]. Customized local strategies are needed to maximize food supply and enhance the
ecosystem at the same time. One such strategy is to enable dry season production to address the
adverse effects of rainfall variability. The conservation agriculture production system (CAPS), which
promotes no-till, mulching, and diverse cropping, has been shown to provide higher water use
efficiency in addition to improving soil fertility [6–9]. Similarly, adoption efficient water application
technologies can increase water use efficiency [10]. In relation to irrigation technology, drip irrigation is
considered the most efficient water application technology [11,12]. CAPS combined with drip irrigation
constitutes efficient soil and water management technology, which helps to maximize the potential of
water resources and consequently increase productivity in the region [8]. Another concern is the lack
of knowledge of potential to expand irrigated agriculture and maximize production. Worqlul et al., [3]
indicated that less than 5% of the potentially irrigable lands are currently under irrigation.

While the positive impacts of CAPS with drip irrigation have been identified, expanding the
impact to a large-scale adaptation on a country level and linking it with water resources availability
would provide substantial and very useful information to policymakers in a decision-making process to
improve the agriculture systems in the nation. Assessments of potentially irrigable land, corresponding
crop productivity, and availability of water resources are essential components for the scale-up of CAPS
with drip irrigation technology. There are few quantitative studies [3], that provided country-level
irrigation potential assessment under the conventional tillage production system (CTPS) with traditional
irrigation practice. However, no literature was found for a large-scale adaptation of CAPS with drip
irrigation. This study attempts to examine the country-level adaptation of CAPS with drip irrigation
technology for its impact on groundwater potential and crop productivity based on experimental
results presented in Assefa et al. [8]. The specific objectives were to (1) assess potentially irrigable
land using the multi-criteria evaluation (MCE) technique, (2) scale-up crop yields by integrating the
MCE technique and a biophysical model field-scale prediction, and (3) asses groundwater irrigation
potential for dry season production. The analyses were made for garlic, onion, tomato, and cabbage
which are commonly grown vegetables in Ethiopia [13].

2. Materials and Methods

2.1. Study Area

This study was conducted in Ethiopia, the second-largest populated country in the entire continent
of Africa, next to Nigeria (Figure 1). The landmass of the country is approximately 110 million ha, and
elevation ranges from 160 m to 4530 m above mean sea level [3]. Climate variability (as it pertains
to variability in rainfall and temperature) was observed to be very high in Ethiopia (i.e., 15% to 50%
coefficient of variation for rainfall and 1.6◦C annual average rise) based on the long-term (1955–2015)
evaluation of climate data. This poses major risks to rainfed crop production [14,15] which is the
dominant agriculture practice in Ethiopia [16]. The southwestern portion of the country receives about
2400 mm of rainfall, whereas northeastern and southeastern lowland receives less than 500 mm per
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year [17]. There are three seasons in the year locally known as Kiremt (main rainfall season), Belg
(small rainfall season), and Bega (dry season) [18].Water 2019, 11, x FOR PEER REVIEW 3 of 15 
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suitability classes. Factors were then combined using “weighted sum overlay” to produce a single 

Figure 1. Ethiopia and its administrative regions with water bodies.

2.2. Scale-Up of Field-Scale Parameters

The MCE technique and agricultural policy environmental eXtender (APEX) model was used to
scale-up the field-scale CAPS with drip irrigation (Figure 2). MCE was used to identify potentially
irrigable lands in the country based on various factors that affect irrigated agriculture. MCE is an
emerging approach that involves combining multiple variables to produce a single evaluation index for
an intended purpose [2,19–26]. The MCE technique has been used for various applications including
crop agriculture, water resource management, and other environmental studies [2,3,26–33].

A range of variables (Figure 2) were considered in this study to identify potentially irrigable
land in the country. These factors include topography (slope), land use/cover, proximity to road
networks, and population density. Topography affects the choice of irrigable land as it affects irrigation
practices [3]. Digital elevation model (DEM) data with 30 m resolution, was used to derive the
landscape slope for the entire nation. Land use/cover data also provide a vital figure in the selection of
economically productive lands for irrigated agriculture. Similarly, population density and proximity
to road networks were used to account market accessibility to support irrigated agriculture. Euclidean
distance was calculated to establish the proximity criteria to road networks. Factors were reclassified
into various suitability classes depending on the Food and Agricultural Organization [34] guidelines:
Highly suitable (S1), moderately suitable (S2), marginally suitable (S3), currently unsuitable (S4), and
permanently unsuitable or constraint (N1). The equal interval ranging technique was used to reclassify
population density and proximity to road networks based on Worqlul et al., [3]. The pairwise method
was used to compare each factor one-to-one and weights were scaled using works of Saaty [35] and
Worqlul et al., [3]. The pairwise method is a relatively unbiased ranking technique [2,27] and applied
to weigh each factor considered in this analysis. The pairwise technique, Saaty [35], makes use of a
scale broken down from 1 to 9 indicating the equal and absolute importance of a factor when compared
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to a one-to-one basis, respectively. Consistency ratio was used to check the consistency of the pairwise
matrix using Equation (1) described in Saaty [36]. The equal interval ranging technique was used
to distribute the weight of each factor into the suitability classes. Factors were then combined using
“weighted sum overlay” to produce a single evaluation index (0% to 100%) map, and constraints
(permanently unsuitable lands) were excluded from the analysis. Combined weights of greater than
85% were considered to be potentially irrigable lands [2,3].

CR = CI/RI, (1)

where CR = consistency ratio, CI = consistency index, and RI = consistency index of randomly
generated matrix.

Water 2019, 11, x FOR PEER REVIEW 4 of 15 

 

evaluation index (0% to 100%) map, and constraints (permanently unsuitable lands) were excluded 
from the analysis. Combined weights of greater than 85% were considered to be potentially irrigable 
lands [2,3]. 

CR = CI/RI, (1) 

where CR = consistency ratio, CI = consistency index, and RI = consistency index of randomly 
generated matrix. 

Land use SoilRoad 
network

Population 
density

Weather dataDEM

Euclidian 
distance

Unique APEX model 
(soil texture * rainfall regime) 

Slope

Reclassify

Overlaying weighted 
factors 

Weighting by 
pairwise comparison 

Optimized suitability 
> 85% 

Potential irrigable land 

Preliminary irrigation 
suitability 

Upscaling

Groundwater 
recharge and 

depth to 
groundwater 

Crop 
management

APEX model 
combination 

Constraints 

 
Figure 2. Method of scaling-up crop production under conservation agriculture production system 
(CAPS) with drip irrigation technology. 

Soil and climate data were used to define unique areas for biophysical model development. 
Spatial variability of parameters and the effect of scaling needs to be carefully considered while 
upscaling modeling results [37–39]. Table 1 shows the type and source of data used to scale-up field-
scale crop production to the national level. The mean annual rainfall point data from observed 
ground weather stations were used to compute spatial annual rainfall and classify the nation into 
different rainfall regimes. Similarly, soil texture data was used to classify the nation into various soil 
classes. Climate regimes and soil texture data were combined using the intersection of the ArcGIS 
overlay function to identify geographical equivalence zones of similar climate and soil (i.e., 39 zones) 
where each zone has the same soil texture and rainfall regimes. The APEX [40], a biophysical model, 
was set up on the unique climate and soil combinations to simulate crop yield. Weather data (rainfall, 
maximum and minimum temperature, wind speed, relative humidity, and solar radiation), soil 
characteristics, as well as vegetation and management practices are the main inputs to the APEX 
model [41]. The model is capable of evaluating the effects of soil and water conservation practices on 
hydrology, crop yield, and other environmental variables such as sediment, nutrient load, and soil 
organic carbon [42–44]. Proper calibration and validation of model parameters are essential steps for 
reliable predictions [45]. The APEX model was calibrated and validated for a few sites in Ethiopia 
using adequate field data from 13 experimental plots. The calibration results (i.e., model 
performances) are presented in Table 5 and Table 9 of Assefa et al., [9] for hydrology and crop yield, 
respectively. Based on efficiency measures suggested in Moriasi et al., [46] and Wang et al. [47], the 
model performance was found within the range of acceptable to very good. Satisfactory model 
performance during calibration and validation provides greater confidence in the modeling results 
when evaluating various plausible scenarios for modeling prediction. The present study was built on 
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Figure 2. Method of scaling-up crop production under conservation agriculture production system
(CAPS) with drip irrigation technology.

Soil and climate data were used to define unique areas for biophysical model development. Spatial
variability of parameters and the effect of scaling needs to be carefully considered while upscaling
modeling results [37–39]. Table 1 shows the type and source of data used to scale-up field-scale crop
production to the national level. The mean annual rainfall point data from observed ground weather
stations were used to compute spatial annual rainfall and classify the nation into different rainfall
regimes. Similarly, soil texture data was used to classify the nation into various soil classes. Climate
regimes and soil texture data were combined using the intersection of the ArcGIS overlay function to
identify geographical equivalence zones of similar climate and soil (i.e., 39 zones) where each zone
has the same soil texture and rainfall regimes. The APEX [40], a biophysical model, was set up on the
unique climate and soil combinations to simulate crop yield. Weather data (rainfall, maximum and
minimum temperature, wind speed, relative humidity, and solar radiation), soil characteristics, as well
as vegetation and management practices are the main inputs to the APEX model [41]. The model is
capable of evaluating the effects of soil and water conservation practices on hydrology, crop yield, and
other environmental variables such as sediment, nutrient load, and soil organic carbon [42–44]. Proper
calibration and validation of model parameters are essential steps for reliable predictions [45]. The
APEX model was calibrated and validated for a few sites in Ethiopia using adequate field data from 13
experimental plots. The calibration results (i.e., model performances) are presented in Table 5 and
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Table 9 of Assefa et al., [9] for hydrology and crop yield, respectively. Based on efficiency measures
suggested in Moriasi et al., [46] and Wang et al. [47], the model performance was found within the
range of acceptable to very good. Satisfactory model performance during calibration and validation
provides greater confidence in the modeling results when evaluating various plausible scenarios for
modeling prediction. The present study was built on the same model for its application in up-scaling
the impact. Input data were changed based on the unique climate-soil combinations across Ethiopia,
but the same model parameters were used which was established during the calibration. Heat unit
scheduling (OPV7 = 1) was used with shortening cropping period compared to the experimental plots
to capture crop growth variability across the unique regions.

Table 1. Data and sources for upscaling crop production to the county level.

Data Source Spatial Resolution (m)

Land use World land use database (LADA), Food and
Agricultural Organization (FAO), 2010 10,000

Soil Africa Soil Information Service (AFSIS),
2015 250

Digital Elevation Model (DEM) Unites States Geographical Survey (USGS),
2000 (2015 release) 30

Population density Global gridded pupation database, 2000 1000

MODIS potential
evapotranspiration (mm)

MOD16 Global Terrestrial
Evapotranspiration data set (2000–2010) 1000

Potential borehole yield (L/s) British Geological Survey (BGS), 2012 5000

Groundwater depth (m) British Geological Survey (BGS), 2012 5000

Rainfall (mm) Ethiopian National Meteorological Agency
(ENMA), 2000 to 2010 -

Irrigation requirement of crops is mainly a function of reference evapotranspiration and rainfall,
which are variable in space and time. Therefore, variable irrigation water volumes were applied in
the model for each climate zone depending on the type of vegetables grown and weather conditions.
The net irrigation requirement (NIR) for each of the vegetables was calculated depending on reference
evapotranspiration (ETo), crop coefficients of each vegetable at mid-stage (Kc), irrigation application
inefficiency, and effective rainfall amount (ER). Crop coefficients at the mid-stage of crop growth
(Kc-mid) were obtained from Allen et al., [48] of the Food and Agricultural Organization (FAO) for
various vegetables. The net irrigation requirement equation derived by Worqlul et al., [3] for the
country using conventional irrigation inefficacy in Equation (2) was modified in this study (Equation
(3)) to account for drip irrigation inefficiency. Howell [49] indicated that 95% efficiency can be attainable
whereas 90% is the average efficiency for drip irrigation. Thus, 10% application inefficiency was
considered for irrigation and some minor losses such as leaching [50]. Assefa et al. [8] showed that
significant (p ≤ 0.05) reduction of irrigation volume was observed in the conservation of agriculture
(CA) experimental sites when compared to conventional tillage (CT) practice. Therefore, Equation (3)
was further modified using linear coefficient (Cf) to account for the reduction of irrigation volume in
CA practice by comparing the irrigation data from the experimental sites for CA and CT managements
(Equation (4)) (net irrigation requirement for conservation practice, NIRc). The contribution of rainfall
to soil moisture, effective rainfall (ER), in the growing season of vegetables was estimated using the
United States Department of Agriculture Soil Conservation Service (USDA-SCS) method [51], which is
a function of precipitation (P), see Equation (5a) and Equation (5b).

NIR = 1.6×Kc× ETo− ER (2)

NIR = 1.1×Kc× ETo− ER (3)
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NIRc = 1.1×Cf×Kc× ETo− ER (4)

ER = P×
125− 0.2× P

125
; For P ≤ 250 mm/m (5a)

ER = 125 + 0.1× P; For P > 250 mm/m (5b)

where NIR, NIRc, Cf, Kc, ETo, P, and ER are the net irrigation requirement for the tilled system, net
irrigation requirement for conservation agriculture, the coefficient of conservation agriculture, crop
coefficient, reference evapotranspiration, precipitation, and effective rainfall, respectively.

Soil properties, weather data, net irrigation requirements, and cropping details were supplied to
the well-calibrated APEX model in each unique zone. Then, crop yield simulation was integrated with
the irrigable land to limit crop yield estimation only on the potentially irrigable land. Groundwater
source of irrigation with a depth less than 30 m from the surface was considered in this study. The
potential borehole yields and the potential numbers of wells that could be installed were used to estimate
groundwater availability in the regions. Maintaining a one-kilometer clear distance between wells (i.e.,
the radius of influence) is suggested by Howsam and Carter [52] to estimate the potential numbers
of wells that could be installed. Maintaining the radius of influence helps to avoid the groundwater
drawdown effect of one well on another. The net irrigation requirement for CA practice, groundwater
availability, and depth to groundwater were considered to determine the potential of groundwater wells
in unique zones. Vegetable yields on the irrigable land were further constrained based on groundwater
availability to identify the potential scale-up areas for CAPS with drip irrigation technology.

3. Results and Discussion

The results of scaling-up crop yield under CAPS with drip irrigation technology to country-level
were presented into three categories: (1) Assessment of potentially irrigable land in the country using
the MCE technique, (2) simulation of potential crop production under CAPS with drip irrigation
using a well-calibrated APEX model, and (3) assessment of groundwater potential for dry season
crop production.

3.1. Potentially Irrigable Land

Four basic factors (topography, land use, proximity to road networks, and population density)
were considered in the MCE technique to identify potentially irrigable land in the nation. Topography
in the nation ranges from 0% (flat land) to greater than 100% (steepest land which is about 0.07% of
the landmass) (Figure 3a). The slope was reclassified into five categories based on Worqlul et al., [27]:
Highly suitable (0%–2%), moderately suitable (2%–8%), marginally suitable (8%–12%), less suitable
(12%–30%), and unsuitable (above 30%). The various land use classes in the nation (Figure 3b) were
reclassified into four suitability classes based on Assefa et al. [2], Worqlul et al., [3], and FAO [53]:
Highly suitable (agricultural land), moderately suitable (grassland), marginally suitable class (shrubs,
bare land), and unsuitable class (forest, urban lands, wetlands, and water). Population density ranges
from 0 to 69,350 persons per square kilometer (Figure 3c), whereas proximity to road network ranges
from 0 to 118 km (Figure 3d).
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The Eigenvector was computed as the nth root of individual factors’ weight and then normalized
with the cumulative Eigenvector to derive the final weights of factors (Table 2). Topography was found
to be relatively the most influential factor in irrigated agriculture, which was consistent with Worqlul
et al.,’s [3] result. Proximity to road networks and land use were found to be the second and third most
influential factors in determining potentially irrigable land in the nation. The consistency ratio was
found to be trustworthy (CR = 0.03 ≤ 0.2) based on Chen et al., [54] and Koczkodaj et al., [55]. The final
weights of factors were distributed to the various suitability classes and factors were combined using
a weighted sum overlay. An 85% threshold was used to obtain potentially irrigable land (Figure 4).
About 18.7 Mha of land, 16.7% of the total landmass, was found to be potentially irrigable in the nation
without considering soil and weather. The suitability ranges in Figure 4 cover different portions of the
irrigable land: 85%–88% (76% of the irrigable land), 88%–91% (11% of the irrigable land), 91%–94% (1.5
of the irrigable land), 94%–97% (11.5% of the irrigable land), and 97%–100% (0.4% of the irrigable land).

Table 2. Pairwise matrix for calculation of the weight of factors.

Factors Slope Road Proximity Population Density Land Use Eigenvector Weight (%)

Slope 1.0 2.0 4.0 3.0 2.2 46.3
Road 1/2 1.0 3.0 2.0 1.3 27.5

Population density 1/4 1/3 1.0 1/3 0.4 8.5
Land use 1/3 1/2 3.0 1.0 0.8 17.6
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Figure 4. Potentially irrigable land (all green, weight≥ 85); S4 (currently unsuitable areas)- weight < 85%;
N1—constraint (permanently unsuitable areas); abbreviations in the map are administrative regions
(TG—Tigray, AM—Amhara, AF—Afar, BG—Benshangul Gumaz, AD—Addis Ababa, DD—Dire Dawa,
GP—Gambela Peoples, SNNP—Southern Nations, Nationalities and Peoples, and SM—Somali).

Irrigation demand of each vegetable was computed by considering the conservation agriculture
principles, drip irrigation technology, water use of different vegetables, and weather conditions.
Oromia regional state has the highest irrigable land (35.4%) when compared with other states. Figure 5
illustrates the degree of irrigation suitability (i.e., marginal, satisfactory, medium, high, and very high)
for potentially irrigable lands: 18.7 Mha, 4.5 Mha, 2.5 Mha, 2.2 Mha, and 0.082 Mha at 85%, 88%, 91%,
94%, and 97% suitability classes, respectively.
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3.2. Potential Crop Production under Conservation Agriculture

Figure 6a shows the various soil texture classes in the nation. The mean annual rainfall was
computed spatially using inverse distance weighting interpolation from weather stations point data
(Figure 6b), and the spatial rainfall was reclassified using natural breaks into eight rainfall zones
(Figure 6c). Soil textures and rainfall zones were combined, which resulted in 39 unique regions for
further analyses of crop yields. The APEX model was developed for each of 39 unique zones, which
was defined using the soil texture classes and climate zones. Results were then aggregated as per
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administrative boundaries of Ethiopia (11 regional states) to provide input for decisionmakers in
developing policy and implementation strategies for water resource and agriculture-related projects.
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Crop coefficients at the mid-stage of crop growth (Kc-mid) were obtained from Allen et al., [48] of
the Food and Agricultural Organization (FAO) for various vegetables. These data indicate that more
irrigation is needed for tomato during the mid-stage of growth followed by cabbage when compared
to garlic and onion. Moderate resolution image spectrum (MODIS) potential evapotranspiration
data (2000–2010) was used to estimate the net irrigation demand in the region during the dry season.
The growing period used for garlic, onion, and cabbage was December through February whereas
December through March was the growing season for tomato.

This study used these water use data for the various vegetables under CA and CT practices from
Assefa et al., [8] and developed a linear irrigation coefficient, Cf, for each vegetable to account for
irrigation volume reduction under CA during the calculation for the irrigation requirement. The value
of Cf obtained from CA and CT comparison was 0.58, 0.54, 0.80, and 0.81 for garlic, onion, tomato,
and cabbage, respectively. These coefficients explain the advantage of conservation practices over
conventional tillage systems for irrigation water savings mainly due to mulch cover and no-till practice
in CAPS plots minimized water loss through evaporation and runoff. Additionally, the water-saving
in garlic and onions was higher when compared with cabbage and tomato. This could be due to the
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less leaf area of garlic and onion, which made the impact of CAPS significant in reducing water loss
when compared with tomato and cabbage.

Net irrigation demand was computed for each vegetable over the irrigable land considering
drip irrigation efficiency, crop coefficient, effective rainfall during the growing period, and irrigation
coefficient. These data along with other inputs such as soils, weather data, cropping details, irrigation
application rate, and crop water demand were supplied to the calibrated APEX model to estimate crop
yield. Crop yield results were averaged for the simulation period (2000–2010) and limited to potentially
irrigable land in the nation. The average fresh vegetable yield under CAPS ranged from 1.8–2.8 t ha−1

for garlic (Figure 7a), 1.4–2.2 t ha−1 for onions (Figure 7b), 5.5–15.7 t ha−1 for tomato (Figure 7c), and
8.3–12.9 t ha−1 for cabbage (Figure 7d). Crop productivity was found to be higher in Oromia and
Amhara regions due to the combined effects of the weather and soil condition. The variation of yields
for tomato was found relatively high when compared to other vegetables, possibly due to weather
variations and the fact that tomato is more sensitive to cold weather. The maximum and minimum
allowable temperature for tomato is 27◦C and 10◦C, respectively, for optimal crop growth.
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3.3. Groundwater Potential for Crop Production under CAPS with Drip Irrigation

Groundwater depth of less than 30 m is considered feasible for irrigation in the nation
Gebregziabher [56]. Thus, depth to groundwater less than 30 m were considered in this study
for the estimation of groundwater potential. Worqlul et al., [3] validated the British Geological Survey
(BGS) groundwater borehole yield estimates in the central part of Ethiopia using actual groundwater
recharge data from the Agricultural Transformation Agency (ATA). The net irrigation requirements for
crops were deducted from groundwater potential to identify areas where groundwater fully supports
to produce vegetables during the dry season. Figure 8 depicts areas where groundwater potential can
support to produce garlic, onion, tomato, and cabbage, respectively.
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Figure 8. Crop yields over the irrigable lands (a) garlic, (b) onion, (c) tomato, and (d)
cabbage. Abbreviations in the map are administrative regions (TG—Tigray, AM—Amhara,
AF—Afar, BG—Benshangul Gumaz, AD—Addis Ababa, DD—Dire Dawa, GP—Gambela Peoples,
SNNP—Southern Nations, Nationalities and Peoples, and SM—Somali).

Table 3 presents the potential of groundwater for different vegetables as a percentage of
potentially irrigable land over the administrative regions. For instance, considering the Oromia
region, groundwater is enough to irrigate 0.95 Mha, 1.5 Mha, 0.6 Mha, or 0.5 Mha if planting garlic,
onion, tomato, or cabbage, respectively, from the potentially irrigable land (6.6 Mha) if planting garlic
or onion. That means, 8.9% to 14.3% of the potential land in Oromia could be irrigated depending on
the type of crop using groundwater if CAPS with drip irrigation is used. Similarly, 8.8% to 30% of the
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potential land in Amhara and 11.6% to 29.8% of the potential land in Southern Nations, Nationalities
and Peoples (SNNP) could be irrigated using groundwater. Oromia has the highest groundwater
potential (40.9% of total potential) followed by Amhara (20% of total potential), and SNNP (16%). At
country level (aggregated from administrative regions), groundwater potential was found to support
about 2.3 Mha (Figure 8a), 3.5 Mha (Figure 8b), 1.6 Mha (Figure 8c), and 1.4 Mha (Figure 8d) of land
to produce garlic, onion, cabbage, and tomato, respectively in the dry season. Onion has relatively
the least irrigation demand and thus has the highest production area coverage using groundwater,
followed by garlic, whereas tomato and cabbage have relatively high irrigation demands and thus less
area coverage for production using groundwater source.

Table 3. Irrigable land and potential of groundwater for various vegetables.

Administrative Region Irrigable land (1000 ha) Groundwater Potential on the Irrigable Land (1000 ha)

Garlic Onion Tomato Cabbage

Addis Ababa 9.3 1.2 3.0 0.0 0.0
Afar 1539.0 255.5 303.6 239.8 236.0

Amhara 2628.0 459.2 787.3 291.4 230.0
Benshangul-Gumaz 327.0 9.6 20.0 5.9 2.7

Dire Dawa 16.7 1.5 1.5 1.5 1.5
Gambela Peoples 320.0 32.9 86.2 10.8 0.9

Harari People 11.4 0.0 0.0 0.0 0.0
Oromia 6621.0 946.7 1473.5 644.8 553.0
Somali 3990.0 49.0 55.2 48.2 46.8
SNNP 1910.0 369.7 570.0 254.9 222.0
Tigray 1326.0 152.0 175.3 148.0 146.5

Note: SNNP—Southern Nations, Nationalities and Peoples.

4. Conclusions

This study is the first of its kind in providing insight into the impacts of the large-scale adaptation
of CAPS with drip irrigation on groundwater potential and crop productivity for common vegetables
grown in Ethiopia. The results from the MCE technique indicated that there was substantial amount of
land for irrigation using groundwater source (~17% of the total landmass). A comparison between
suitable areas for irrigation and groundwater potential showed that a modest amount of land (up
to 19% of the irrigable land) could be irrigated under CAPS and drip irrigation. The potential of
groundwater, however, is a limiting factor to expand irrigated agriculture on suitable lands. Oromia
and Amhara regional states provided about 61% of the nation’s groundwater potential for irrigation,
hence it would be a wise choice for policymakers to consider these results in expanding irrigated
agriculture for dry season crop productions.

A comparison between groundwater potential results under CAPS with drip irrigation (1.4 to
3.5 Mha) and CTPS [3], showed that CAPS with drip irrigation significantly increased groundwater
potential for irrigation (i.e., 0.6 Mha under CTPS versus 2.2 Mha under CAPS on average). Groundwater
potential could be further improved if irrigation scheduling was incorporated with the drip application
system. Garlic and onion could be produced in relatively larger areas compared to tomatoes and
cabbages due to relatively lower irrigation demand. In addition, CAPS with drip irrigation could
significantly improve crop productivity in the nation when compared to CTPS with traditional irrigation.
Production potential under CAPS with drip irrigation for cabbage (8.3 t ha−1 to 12.9 t ha−1) was
substantially higher than CTPS, [57], which is 7.9 t ha−1 for the national average. Therefore, CAPS
with drip irrigation is a feasible strategy to improve groundwater potential and crop productivity in
the nation. Hence, policymakers should consider CAPS with drip irrigation in expanding small-scale
irrigated agriculture.
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